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Interfacial dynamics-based modelling of turbulent cavitating
�ows, Part-1: Model development and steady-state

computations
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SUMMARY

The merits of transport equation-based models are investigated by adopting an enhanced pressure-based
method for turbulent cavitating �ows. An analysis of the mass and normal-momentum conservation at
a liquid–vapour interface is conducted in the context of homogeneous equilibrium �ow theory, resulting
in a new interfacial dynamics-based cavitation model. The model o�ers direct interpretation of the
empirical parameters in the existing transport-equation-based models adopted in the literature. This
and three existing cavitation models are evaluated for �ows around an axisymmetric cylindrical body
and a planar hydrofoil, and through a convergent–divergent nozzle. Although all models considered
provide qualitatively comparable wall pressure distributions in agreement with the experimental data,
quantitative di�erences are observed in the closure region of the cavity, due to di�erent compressibility
characteristics of each cavitation model. In particular, the baroclinic e�ect of the vorticity transport
equation plays a noticeable role in the closure region of the cavity, and contributes to the highest level
of turbulent kinetic energy there. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In liquid �ows, cavitation generally occurs if the pressure in certain locations drops below
the vapour pressure and consequently the negative pressures are relieved by the formation
of gas-�lled or gas- and vapour-�lled cavities [1]. Cavitation can be observed in a wide
variety of propulsion and power systems like pumps, nozzles, injectors, marine propellers,
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hydrofoils and underwater bodies [2]. Such �ows in most engineering systems are turbulent.
The dynamics of the interface formed involves complex interactions between vapour and liquid
phases. These interactions are not well understood in the closure region of the cavity where
a distinct interface may not exist and the mean �ow (in the sense of ensemble averaging) is
unsteady.
The Navier–Stokes-based computations of turbulent cavitating �ows have received grow-

ing attention due to advances in computational capabilities and physical modelling for these
problems. In addition to high Reynolds number and multiphase nature of the �ow, disparities
between �uid properties of each phase, especially the density ratio, which is around 1000
for typical �uid machinery operating conditions, make such computations challenging. The
inception and subsequent development of a cavity into other stages of cavitation, namely
sheet, cloud, vortex and supercavitation, is driven by the phase change due to hydrodynamic
pressure drop and bubble dynamics [2]. Owing to changes in �uid properties and physical
mechanisms across the liquid–vapour boundaries, existing computational algorithms of single-
phase, incompressible �ow often experience severe convergence and stability problems for
cavitating �ows. To remedy this situation, improved numerical methods have been proposed.
In the context of density-based methods, the arti�cial compressibility method has been ap-
plied with special attention given to the preconditioning technique [3–7]. Following the spirit
of the well-established SIMPLE algorithm [8], a pressure-based method for turbulent cavitat-
ing �ows has also been developed [9]. Both pressure- and density-based methods, adopting
steady-state computations, have been successful in computing turbulent cavitating �ows around
axisymmetric bodies and hydrofoils with comparable accuracy.
A common approach in cavitation modelling is to use the homogeneous �ow theory. In this

theory, the mixture density concept is introduced and a single set of mass and momentum
equations is solved. Di�erent ideas have been proposed to generate the variable density �eld;
a review of the published studies is given in Reference [10]. Some of the existing studies
solve the energy equation and determine the density through suitable equations of state [4].
Since most cavitating �ows are isothermal, arbitrary barotropic equations have been proposed
to supplement the energy consideration [11, 12]. Another popular approach is the transport
equation-based model (TEM) [3, 5–7, 9, 13]. In TEM, a transport equation for either mass or
volume fraction, with appropriate source terms to regulate the mass transfer between phases,
is solved. Di�erent modelling concepts embodying varied source terms have been proposed by
several researchers, as will be discussed in the next section. Growing experimental information
can directly help assess the adequacy of the proposed physical models. For example, it has
been shown that vorticity production is an important aspect of cavitating �ows, especially in
the closure region [14]. Speci�cally, this vorticity production is a consequence of the baroclinic
generation term of vorticity equation, namely,

∇1
�

×∇P

Clearly, if an arbitrary barotropic equation �=f(P) is used, then the gradients of density
and pressure are always parallel; hence, the baroclinic torque is zero. This suggests that
physical models which utilize a barotropic equation fail to capture an experimentally observed
characteristic of cavitating �ows. Likewise, solving an energy equation may also experience
the same situation if the �ow is essentially isothermal. However, in TEM approaches the
density is a function of the transport process. Consequently, gradients of density and pressure
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are not necessarily parallel, suggesting that the TEM can accommodate the baroclinic vorticity
generation. Based on this identi�cation, the TEM approach is adopted in the present study.
Di�erent modelling concepts have been introduced in the TEM with varied numerical treat-

ments such as grid resolution and discretization accuracy. As a result, there is a lack of clear
consensus on the capability and relative merits of these models. Three of these models, which
have been employed in the literature, will be summarized in the coming sections. A common
characteristic of these models is the use of empirical parameters to regulate the mass transfer
process. Although these empirical parameters seem ad hoc, satisfactory results for di�erent
geometries and �ow conditions have been obtained [15, 16]. The values of the empirical
parameters are largely determined through numerical experimentation. Recently, Rajkumar
et al. [16] have performed a systematic evaluation of the empirical parameters of a particular
model [5] using the response surface methodology and design of experiments. Clearly, we can
further the modelling capability by clarifying the key concepts and parameters involved via
improved physical understanding. To realize this goal, better modelling capabilities are needed.
Hence, the goals of the present study are as follows:

• Develop a transport equation-based cavitation model, and address the empiricism in the
existing cavitation models.

• Assess the predictive capability of transport equation-based cavitation models using well
documented experimental information.

• Study the cavitating �ow structure involving, in particular, vorticity dynamics and tur-
bulence production.

In what follows, the governing equations and the numerical method are brie�y presented
�rst. Three transport equation-based cavitation models from the literature are summarized.
Following this, an analysis of the mass and momentum conservation at a liquid–vapour phase
change interface is conducted and a new interfacial dynamics-based cavitation model is de-
veloped. Based on the available experimental data in literature, the new cavitation model and
three empirical cavitation models are evaluated for �ow around an axisymmetric, hemispher-
ical projectile and an NACA66MOD hydrofoil. The new model is further employed to study
the �ow structure in a convergent–divergent nozzle.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

The set of governing equations consists of the conservative form of the Favre-averaged
Navier–Stokes equations plus a transport equation to account for the cavitation dynamics.
The equations, written in the Cartesian co-ordinates for the ease of presentation, are presented
as follows:

@ ��m
@t

+∇ · ( ��mũ)=0 (1)

@( ��mũ)
@t

+∇ · ( ��mũũ)= −∇ �P +∇ · ( ��ij + �Rij) (2)

��ij + �Rij =(�+ �t)
[(
@ũi
@xj

+
@ũj
@xi

)
− 2
3
�ij
@ũk
@xk

]
(3)
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where P is the pressure, u the velocity vector, �m the mixture density, � the laminar viscosity,
�t the turbulent viscosity, �ij the viscous stress tensor and �Rij the Reynolds stresses based on
the Boussinesq’s eddy-viscosity hypothesis. The overbar represents a time-average whereas
the tilde represents a density-weighted average. Time-derivative terms are dropped for steady
�ow computations.
For cavitation modelling, a transport equation with source terms is solved:

@ ��L
@t

+∇ · ( ��Lũ)= ṁ− + ṁ+ (4)

where �L is the liquid volume fraction, ṁ
− the source term for evaporation and ṁ+ the source

term for condensation. The mixture density is de�ned as

��m =�L ��L + �V(1− ��L) (5)

where �L and �V are the liquid and vapour densities, respectively. A nominal density ratio
of 1000 is assigned. The particular form of the cavitation models are documented in the next
section. For turbulence closure, the original k–� model with the wall functions is adopted
[17, 18].
The present Navier–Stokes solver employs a pressure-based algorithm along with the �nite

volume approach. The governing equations are solved on multi-block, structured curvilinear
grid [19, 20]. The resulting system of equations for turbulent cavitating �ows is solved using
the pressure-based method developed by Senocak and Shyy [9]. A key feature of this method
is to reformulate the pressure correction equation into a convective–di�usive, instead of a pure
di�usive, equation. This modi�cation is achieved through the inclusion of a pressure–velocity–
density coupling scheme into the pressure-correction equation. For details of the numerical
method for turbulent cavitating �ows, the reader is referred to Senocak and Shyy [9]. In Part-2
of the present study, we extend the PISO algorithm [21] for turbulent cavitating �ows and
adopt it in time-dependent computations.

3. TRANSPORT EQUATION-BASED EMPIRICAL CAVITATION MODELS

Three cavitation models adopted in the literature are considered. Each model introduces two
empirical parameters. These parameters are typically determined through numerical experi-
mentation. The same parameters can be used for di�erent geometries and �ow conditions
provided that they are non-dimensionalized with the free stream values [15, 16].

3.1. Model-1 (from References [3, 22])

Several researchers have adopted this model [3, 6, 22]. Both volume and mass fractions have
been adopted. Both evaporation and condensation terms are functions of pressure. The liquid
volume fraction form is considered in this study

@ ��L
@t

+∇ · ( ��Lũ)= Cdest�L MIN(
�P − PV; 0) ��L

�V(0:50�LU 2∞)t∞
+
Cprod MAX( �P − PV; 0)(1− ��L)

(0:50�LU 2∞)t∞
(6)

where Cdest and Cprod are empirical parameters regulating the rate of condensation and evap-
oration, respectively, U∞ is the free stream velocity, t∞=Lch=U∞ is the characteristic time
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scale and Lch is the characteristic length of the �ow problem. The subscripts L and V stand
for liquid and vapour phases, respectively. The empirical factors adopted in this study have
the following values (Cdest = 1:0; Cprod = 8:0× 101).

3.2. Model-2 (from Reference [5])

In this model, the liquid volume fraction is chosen as the dependent variable in the transport
equation. The evaporation term is a function of pressure whereas the condensation is a function
of the volume fraction:

@ ��L
@t

+∇ · ( ��Lũ)= Cdest�V MIN(
�P − PV; 0) ��L

(0:50�LU 2∞)�Lt∞
+
Cprod�2L(1− ��L)

�Lt∞
(7)

The empirical factors have the following values, (Cdest = 9:0× 105; Cprod = 3:0× 104), as de-
termined previously [9].

3.3. Model-3 (from Reference [23])

In this model, the vapour mass fraction is the dependent variable in the transport equation.
Both evaporation and condensation terms are functions of pressure. The model equations
adopted here are slightly di�erent from the ones in the original paper [23], which considers
non-condensable gas and uses the square root of the turbulent kinetic energy as the char-
acteristic velocity. In our formulation, we use the mean velocity (U∞) as the characteristic
velocity and the non-condensable gas content of the liquid phase is not considered, because
cavitation is modelled as a mass transfer process based on the cavitation inception condition
(P¡Pvap).

@( ��m �fV)
@t

+∇ · ( ��m �fVũ)= (ṁ− + ṁ+) (8)

ṁ− =Cdest
U∞
�
�L�V(1− �fV)

[
2
3
PV − �P
�L

]1=2
if P¡PV

ṁ+ =Cprod
U∞
�
�L�V �fV

[
2
3

�P − PV
�L

]1=2
if P¿PV

(9)

1
��m
=
�fV
�V

+
(1− �fV)
�L

(10)

where �f is the mass fraction and � is the surface tension. The empirical factors have the
following values, (Cdest=�=1:225× 103; Cprod=�=3:675× 103).
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4. DEVELOPMENT OF AN INTERFACIAL DYNAMICS-BASED
CAVITATION MODEL

The development of the model starts by considering a liquid–vapour interface. The mass and
normal momentum conservation at such an interface can be written as follows [24]:

�L(VL; n − VI; n)=�V(VV; n − VI; n) (11)

PV − PL = �
(
1
R1
+
1
R2

)
+ 2�V

@VV; n
@n

− 2�L @VL; n@n
+ �L(VL; n − VI; n)2 − �V(VV; n − VI; n)2 (12)

where V is the velocity, P the pressure, R the radius of curvature, n the normal direction to
the interface, � the density, � the surface tension and � the viscosity. The subscripts I, L,
V represent the interface, the liquid phase and the vapour phase, respectively. Note that the
conservation of energy principle is not taken into account because the thermal consideration
is excluded. In many practical applications, the physics of the cavitating �ow is governed
by the hydrodynamics [1, 2] with little thermal implications. On the other hand, in cryogenic
applications, the energy conservation principle should also be taken into account.
Figure 1 illustrates a typical liquid–vapour interface based on the homogeneous �ow theory.

The mixture density is de�ned as follows based on the liquid volume fraction [25]:

�m =�L�L + �V(1− �L) (13)

As shown in Figure 1, a hypothetical interface is assumed to lie in the liquid–vapour mixture
region. One can further assume that the phase change takes place between the vapour and
mixture phases, because in the sharp interface limit, Equation (13) can represents either the
vapour or liquid density. In the present formulation, the liquid phase is represented by the
mixture phase and hence, the mass and normal momentum conservation reduces to the fol-
lowing forms after dropping the viscous and surface tension e�ects because of their negligible

U ρ
L

ρ
V

ρm

Figure 1. Representation of a vapourous cavity in homogeneous �ow theory.
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contributions for �ows at high Reynolds numbers (e.g. above 105)

�V(VV; n − VI; n) = �m(Vm; n − VI; n) (14)

PV − PL = �m(Vm; n − V1; n)2 − �V(VV; n − VI; n)2 (15)

From the mass conservation condition, Equation (14), the following relation can be deduced:

(Vm; n − VI; n)= �V(VV; n − VI; n)�m
(16)

The momentum conservation condition, Equation (15), can be rearranged by incorporating the
mass conservation condition, Equations (14), and (16), resulting in the following form:

PV − PL =�V(VV; n − VI; n)2 ·
(
�V
�m

− 1
)

(17)

At this point, the de�nition of the mixture density, given in Equation (13), is incorporated
into the above equation that leads to the following forms:

PV − PL = �V(VV; n − VI; n)2 ·
(

�V
�L�L + �V(1− �L) − 1

)
(18)

(�V − �L)�L = (PV − PL)�L�L + (PV − PL)�V(1− �L)
�V(VV; n − VI; n)2 (19)

The �nal form de�ning the liquid volume fraction after further arrangement becomes

�L =
�L(PL − PV)�L

�V(VV; n − VI; n)2(�L − �V) +
(PL − PV)(1− �L)

(VV; n − VI; n)2(�L − �V) (20)

In the context of the TEM, one can couple the above interfacial condition as a source term
into the transport equation of liquid volume fraction, based on a dimensional argument. Such
practices are often adopted in turbulence modelling [26]. Equation (20) is normalized with
a characteristic time scale, de�ned as t∞=Lch=U∞. The time scale is chosen based on the
characteristics length scale and the free stream velocity to be consistent with the Reynolds
number de�nition. With this choice of the time scale, the source terms represent the mass
transfer rates of the bubble cluster, but not the mass transfer rates of single bubbles. The rate
of generation of �L is then written as

Ṡ=
�L
t∞
=

�L(PL − PV)�L
�V(VV; n − VI; n)2(�L − �V) t∞︸ ︷︷ ︸

I

+
(PL − PV)(1− �L)

(VV; n − VI; n)2(�L − �V) t∞︸ ︷︷ ︸
II

(21)

The above source term coupled to the transport equation of �L is shown below:

@�L
@t

+∇ · (�Lu)= �L(PL − PV)�L
�V(VV; n − VI; n)2(�L − �V) t∞ +

(PL − PV)(1− �L)
(VV; n − VI; n)2(�L − �V) t∞ (22)
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The �rst term on the right-hand side, compared to the second term, is scaled naturally by a
factor of the nominal density ratio (�L=�V). To utilize the above equation, the vapour phase
velocity normal to the interface (VV; n) and the velocity of the interface (VI; n) are needed.
The derivation of the model is based on an existing interface; hence, conditional statements

are required on the pressure terms in order to couple the model to the �ow computation. The
cavitation inception occurs once the hydrodynamic pressure drops below the thermodynamic
vapour–pressure value of the corresponding liquid [2]. As seen from Equation (21), in the
pure liquid phase (�L =1) the second term is zero and only the �rst term can respond to a
pressure drop below the thermodynamic vapour–pressure value. Hence, the inception condition
is imposed as a minimum (MIN) function Equation (21). Similarly, in the pure vapour phase
(�L =0) the �rst term is zero and only the second term can respond to a pressure increase
above the thermodynamic vapour–pressure value. Hence, the designated condensation condi-
tion is imposed as a maximum (MAX) function on the pressure di�erence term of the second
term. In short, the �rst term of Equation (21) is responsible for conversion from liquid phase
back to vapour phase (evaporation), and the second term of Equation (21) is responsible for
conversion from vapour phase back to liquid phase (condensation). With these inclusions,
the model equation to be solved along with Favre-averaged Navier–Stokes equations is the
following:

@ ��L
@t

+∇ · ( ��Lũ)= �L MIN( �P − PV; 0) ��L
�V(VV; n − VI; n)2(�L − �V) t∞ +

MAX( �P − PV; 0)(1− ��L)
(VV; n − VI; n)2(�L − �V) t∞ (23)

With the above interfacial dynamics argument, Equation (23) forms a transport equation-based
cavitation model for Navier–Stokes computations of cavitating �ows. Furthermore, the present
model has similar terms as Model-1 [3, 22], but the empirical factors can now be interpreted
by the following physical terms:

Cdest
0:50�LU 2∞

→ 1
(�L − �V)(VV; n − VI; n)2 ;

Cprod
0:50�LU 2∞

→ 1
(�L − �V)(VV; n − VI; n)2 (24)

The model requires that an interface be constructed in order to compute the interface
velocity (VI; n), as well as the normal velocity of the vapour phase. However, in steady-�ow
computation, the interface velocity (VI; n) is zero and the normal direction of the vapourous
cavity can be computed by taking the gradient of the phase volume fraction [27, 28]. Owing to
the single �uid formulation, u represents the liquid velocity in the liquid phase and the vapour
velocity in the vapour phase. Hence, the vapour phase normal velocity is the dot product of
the velocity and the normal vector:

n=
∇ ��L
|∇ ��L| VV; n= ũ · n (25)

The derivatives with respect to curvilinear co-ordinates are computed using central di�erencing
of the neighbouring cell-centred nodes. Senocak [13] has provided the details.
Since the interfacial velocities appear in the denominator of the source terms, there is a

possibility of division by zero or by very small numbers, which can arise while computing
the normal vectors of the interface at sharp locations. To avoid encountering this situation, a
�lter is devised to smooth out the interfacial terms. In the �ltering process, �rst, a cuto� is
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applied on the interfacial term and then interfacial term at a node is updated by the average
of the surrounding nodes.

5. RESULTS AND DISCUSSION

Three �ow con�gurations are considered, namely, (i) an axisymmetric cylindrical object with
a hemispherical forehead (referred to as hemispherical object) at a Reynolds number of
1:36× 105, (ii) the NACA66MOD hydrofoil at an angle of attack of 4◦ with a Reynolds num-
ber of 2:0× 106 and (iii) a convergent–divergent nozzle at a Reynolds number of 2:0× 106. It
is experimentally observed that sheet (attached) cavitation occurs in a quasi-steady fashion for
all three of the geometries under the given conditions and only time-averaged experimental
data of pressure distribution along the surface are available for hemispherical object [29] and
the NACA66MOD hydrofoil [30]. In their experimental study, Stutz and Reboud [31] have
detailed the two-phase �ow structure of the stable sheet cavitation in a convergent–divergent
nozzle and have provided time-averaged velocity and vapour volume fraction pro�les within
the attached cavity. In this part of the study, only steady �ow computations are performed.

5.1. Flow over a hemispherical object

Figure 2 compares the performance of the various cavitation models for the hemispherical
object at a cavitation number of 0.30. A grid sensitivity study has been previously reported for
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Figure 2. Comparison of surface pressure distribution obtained from empirical cavitation models.
Experimental data is from Reference [29].
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Figure 3. Comparison of surface density distribution obtained from empirical cavitation models.

this particular case in Senocak and Shyy [9]. It has been shown that the pressure and density
are not sensitive to the range of grid resolution investigated. The 2D computation is based
on a single block body-�tted curvilinear grid with 7:8× 103 nodes. As shown in Figure 2, all
three empirical cavitation models match the experimental pressure distribution satisfactorily.
Di�erences in model performance are more noticeable in the closure region, where the vapour
phase condenses. Figure 3 shows the corresponding density distribution along the surface. As
seen from density plots, the liquid phase �rst expands and vapour phase appears uniformly
inside the cavity, then the vapour phase compresses, in a sharp rate, back to the liquid phase.
High density ratios, close to 1000, are attained by the present numerical method without
computational instability. However, noticeable di�erences are observed among the three mod-
els in density pro�les, indicating that the cavitation models generate di�erent compressibility
characteristics. This issue has important implications in time-dependent problems, and will be
investigated in Part-2 of the present study [32].
In Figure 4, the performance of the new interfacial dynamics cavitation model is assessed

through comparison with its empirical counter part, Model-1 [3, 22]. Similar to what is ob-
served in Figure 2, the prediction of pressure remains insensitive to the cavitation model
choice. A noticeable di�erence exists in density distribution within the cavity. The density
ratio is higher in the new model prediction, close to 1000. Plate 1 shows the distribution of
density throughout the cavity and the spanwise vorticity distribution obtained from all four
cavitation models. The interface is captured more sharply with the new interfacial dynamics
model, Model-2 [5] and Model-3 [23] than with Model-1 [3, 22], especially in the downstream
region of the cavity. As seen from the spanwise vorticity distribution, also given in Plate 1,
all models capture the additional generation of vorticity in the closure region.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:975–995



TURBULENT CAVITATING FLOWS: PART 1 985

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

s/D

C
p,

de
n

si
ty

Hemispherical, Re=1.36x105, σ=0.30   

Model-1, Cp  

Model-1,  
Exp. data     

New Model,  
 

New Model, Cp     

 
ρ

ρ

Figure 4. Comparison of surface pressure and density distribution obtained from empirical Model-1 and
the new interfacial dynamics model. Experimental data is from Reference [29].

5.2. Flow over an NACA66MOD hydrofoil

The NACA66MOD hydrofoil �ow is computed at a Reynolds number of 2× 106. The turbu-
lent boundary layer is extremely thin at such a high Reynolds number. Since the original k–�
turbulence model along with the wall function is adopted, it is important to o�er spatial reso-
lutions consistent with the modelling requirement [33]. This requires that the non-dimensional
normal distance from the wall (y+), a representation of the local Reynolds number, should
be in the log-law region. Once a cavity occurs on the surface, the local Reynolds number
decreases due to reduction in density and the �rst grid point away from the wall may not be
positioned in the log layer, but it can be within the viscous sublayer. This issue has important
implications in both accuracy and numerical stability. It is found that proper grid distribution is
critical for such computations. However, there is a trade-o� between positioning the �rst grid
point away from the wall in the log layer, required by the wall function formulation, verses
having enough points to discretize the cavity, especially for high Reynolds number cases. To
illustrate the issues involved, two two-dimensional grids have been tested. Model-2 [5] is used
in the computations as the cavitation closure. Grid-A is a three-block grid with approximately
2:2× 104 nodes, whereas Grid-B is a six-block grid with approximately 3:3× 104 nodes. Close-
up views of the same region in both grids are shown in Figure 5 to demonstrate the di�erences
in spatial resolution. The boundary of the cavitating region is also highlighted on the grids to
give an idea of how many grid points are available to discretize the vapour cavity. Note that
the �rst grid point in Grid-B is positioned to satisfy the (y+) requirement and the rest of the
points are clustered close to it. In Figure 6, the y+ distribution of the �rst grid points away
from the wall is plotted along the surface. The law of the wall is also highlighted on this plot.
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Figure 5. Visual comparison of the grid distributions.
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Figure 6. Distribution of the y+ values of the �rst grid points away from the wall
along the hydrofoil surface.

As shown in Figure 7, the predictions with Grid-A are poor compared to the case with
Grid-B. A very short cavity has been captured with Grid-A as a result of inadequate spatial
resolution. The vapour cavity is so thin that Grid-A can only accommodate two grid points in
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Figure 7. E�ect of grid distribution on predictions. Model-2 is used. Experimental
data is from Reference [30].

this region. On the other hand, Grid-B, the �ner grid, produces results in agreement with the
experiments. As can be observed in Figure 5, special attention has been given to place the
points of the Grid-B in the log layer. A higher resolution grid is also utilized and it is found
that if the y+ values of the cavitating region are in the viscous sublayer, the computation is
not stable. This may be because in the wall function formulation a linear velocity pro�le is
imposed in the viscous sublayer and such a pro�le may not be suitable to represent the phase
change dynamics. It should be emphasized that the original k–� turbulence model is based on
the equilibrium assumption, and the rate of turbulence production and dissipation are balanced
in the log-layer; hence, it is advisable to place the near wall region in the log layer [34]. If
higher resolution is required, a low Reynolds number two-equation turbulence model should
be the choice. Nevertheless, Grid-B is used for all other computations of NACA66MOD
hydrofoil case and the original k–� model with the wall functions is adopted for turbulence
closure.
In Figures 8 and 9, the performance of the cavitation models has been assessed for cavitation

numbers of 0.91 and 0.84, respectively. For cavitation number of 0.84, the vapourous cavity
covers about 60% of the hydrofoil surface. All three empirical cavitation models and the new
interfacial dynamics cavitation model produce satisfactory results at both cavitation numbers.
Di�erences in predictions are more pronounced, similar to the hemispherical object case, at
the closure region, which is due to the di�erent compressibility characteristics imposed by the
cavitation models.
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Figure 8. Comparison of surface pressure distribution. The cavitation number is 0.91. Experimental
data is from Reference [30].

Figure 9. Comparison of surface pressure distribution. The cavitation number is 0.84. Experimental
data is from Reference [30].
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Figure 10. The computational domain and the imposed boundary conditions for
the convergent–divergent nozzle.

Figure 11. The impact of cavitation on the structure of internal �ow through the nozzle.

5.3. Convergent–divergent nozzle (Stable sheet cavitation)

Stutz and Reboud [31] have conducted experiments to detail the �ow structure within sheet
cavitation. A convergent–divergent nozzle with a venturi-type test section is adopted. The test
section is 520mm long 44mm wide and 50mm high at the inlet. The throat height is 43:7mm.
The angle of the convergent part is 4:3◦, whereas the divergent section angle is 4:0◦. A sharp
ridge is formed at the throat section to induce further pressure drop. The experiments have
been carried for a cavitation number ranging between 0.60 and 0.75. The Reynolds number
ranges from 4:3× 105 to 2:1× 106. The accuracy of the velocity measurements is ±10%. The
results have been presented for a mean cavity length of 80 mm. The LDA measurements
have indicated a nearly 2D �ow. Based on this information from Stutz and Reboud [31], the
cavitation number and the Reynolds number are chosen as 0.62 and 2:0× 106, respectively,
for the present computations. The computational domain and the imposed boundary conditions
are shown in Figure 10.
Figure 11 shows a comparison between the non-cavitating and cavitating conditions in

the nozzle. The turbulent kinetic energy and the pressure �elds for both cavitating and non-
cavitating conditions are shown. It is clear that cavitation not only alters the local �ow details
but also the overall �ow structure in the nozzle. The highest level of turbulent kinetic en-
ergy production is just downstream of the cavity. This �nding is in good agreement with
the experimental results of Gopalan and Katz [14], who have also studied sheet cavitation in
a nozzle but with a di�erent geometry and �ow conditions. The pressure �eld in the throat
section is noticeably a�ected due to the presence of sheet cavitation, also shown in Figure 11.
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As can be deduced from the contour plots, the pressure gradient �eld under cavitating con-
ditions is more complex compared to the non-cavitating conditions. Strong adverse pressure
gradients are responsible for the reverse �ow in the closure region, which does not exist
in non-cavitating conditions. Adverse pressure gradients are known to be responsible for the
re-entrant jet cavitation instability [35].
It is important to know the source of turbulence production in the closure region. In partic-

ular, this information can be helpful in identifying possible areas of improvement in compu-
tational modelling of cavitation. It is well known that the original k–� model has de�ciencies
for complex �ow structure [26]. Nevertheless, for cavitating �ows, there is insu�cient infor-
mation to suggest a more complicated model for realistic geometries and �ow parameters.
Gopalan and Katz [14] concluded that the origin of the turbulence production is the collapse
of the cavities in the closure region, which results in vorticity generation. Obviously, the col-
lapse of the cavities cannot be well simulated within the present steady-state assumptions, but
the spanwise vorticity �eld has indicated additional vorticity in the closure region, as shown
previously in the hemispherical object case. Considering the fact that an adverse pressure gra-
dient generates a recirculation zone behind sheet cavitation, the main question to be asked is;
what are the e�ective terms in the vorticity transport equation responsible for the generation
of spanwise vorticity in the closure region. The vorticity transport equation is written as [1]

@�
@t
+∇× (�× u)= 1

�2
∇�×∇P + �∇2� (26)

Figure 12 shows the contour plots of the e�ective terms of the vorticity transport equation
along with the spanwise vorticity distribution. Clearly, the baroclinic term of the vorticity
transport equation is important in the closure region of the cavity. Hence, it can be concluded
that the additional turbulence production is driven by the baroclinic vorticity generation.
Figure 13 shows a direct comparison of the computed cavity and velocity vectors with the

experiment. The results are in good agreement with the experiment and indicate the thickening
of the boundary layer in cavitating regions. The boundary layer follows the cavity boundary
but slightly thicker than the cavity. The experiments show the reverse �ow behind the cavity
but it is not presented in this particular plot.
A more direct comparison of the cavity boundary and velocity pro�les within cavity is also

performed. As seen in Figure 14, the cavity boundary and it is overall shape is reasonably
captured by the computations. Discrepancy exists in terms of the quantitative extent of the
reverse �ow. The present results indicate a shorter one, which results in di�erent velocity
pro�les. Figure 15 presents the comparison of vapour volume fraction distribution. The exper-
imental data indicate a mixture in the reverse �ow whereas the computation captures a pure
liquid reverse �ow. The vapour content is noticeably higher in the computational results.
The discrepancy observed in velocity and void fraction pro�les result in part from the steady

�ow computations; in Part-2 of the present study [32] we will show that time-dependent
simulations can produce a better agreement with the experimental data.

6. CONCLUSIONS

The present study has focused on understanding the relative merits of transport equation-based
cavitation models. Favre-averaged Navier–Stokes equations, cast in their conservative form,
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Figure 12. The e�ective terms of the vorticity transport equation for cavitating conditions.
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Figure 13. The velocity �eld around sheet cavitation. The bottom plot is reproduced from the
experimental study of Stutz and Reboud [31] with the permission of authors.

along with transport equation-based cavitation models and the original k–� turbulence model
have been employed. A uni�ed pressure-based method for turbulent cavitating �ows [9] has
been adopted for the computations.
Three versions of the transport equation-based empirical cavitation models have been con-

sidered. An analysis of the mass and momentum conservation at a liquid–vapour interface
has been conducted in the context of homogeneous equilibrium �ow theory. The analysis
helps shed light into the source of empiricism in the existing transport equation-based cavi-
tation models. Based on the analysis of interfacial dynamics, a new transport equation-based
interfacial dynamics cavitation model has been developed.
Three �ow con�gurations have been tested, including a hemispherical projectile, the NACA

66MOD hydrofoil and a convergent–divergent nozzle. The new interfacial dynamics cavitation
model and the existing empirical cavitation models considered have produced qualitatively
comparable results in wall pressure distributions. However, quantitative di�erences in pressure
and density distributions, especially in the closure region, are observed, implying that the
compressibility e�ects are handled di�erently in the cavitation models. These di�erences can
signi�cantly impact the time-dependent �ow computations. In Part-2 of the present study [32],
the issue is investigated in more depth.
The abrupt change of density pro�les across the cavity boundary has implications on the

near-wall turbulence treatment with the k–� turbulence model. Owing to reduction of density
in the cavitating region, the local Reynolds number reduces substantially, which can create
di�culty to accommodate the resolution requirement in both liquid and cavity regions. The
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Figure 14. Comparison of the cavity boundary and the velocity pro�les within the cavity. Experimental
data is from Reference [31].
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Figure 15. Vapour volume fraction pro�les within the cavity. Experimental data is from Reference [31].
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issue causes di�culties in numerical stability of cavitating �ow computations, if the grid
resolution of the cavity includes the viscous sublayer. The problem has been identi�ed and
overcome by adopting wall-function consistent grids that resolves the cavity within the log-law
region of the turbulent boundary layer.
The new interfacial dynamics cavitation model has been further applied to a convergent–

divergent nozzle �ow problem to study the two-phase �ow structure of sheet cavitation. It is
found that the baroclinic term of the vorticity transport equation is e�ective in the closure
region that contributes to the highest level of turbulent kinetic energy production there. The
sheet cavitation formed in the nozzle a�ects the overall �ow structure in the nozzle. Strong
adverse pressure gradients are responsible for the reverse �ow in the closure region, which
do not exist for the non-cavitating case. Although steady �ow computations yield satisfactory
pressure distributions and highlight important �ow structures, the velocity and void fraction
pro�les are not well captured. We will further investigate this issue by adopting time-accurate
computations in Part-2 of the present study [32], demonstrating improved predictions.
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